Renal Function Tests

Rajarshi Kar

Assistant Professor

Dept of Biochemistry

Objectives

- Enumerate the functions of kidney
- Discuss the biochemical test which are done to assess the function of kidney
- Discuss the abnormalities in biochemical tests associated with renal impairment

Kidney Functions

- Excretory
- Homeostatic
- Endocrine
- Metabolic

Renal Function

- Excretory Functions
 - Formation and excretion of urine
 - Glomerular filtration
 - Tubular reabsorption
 - Tubular secretion
 - Excreting toxic substances in synergy with liver
- Homeostatic function
 - Regulation of blood volume
 - Regulation of blood pH
 - Regulation of serum electrolytes; Na, K, Cl and Ca
 - Reabsorption of essential nutrients

Renal Function

- Endocrine function
 - Erythropoietin
 - Renin Angiotensin system
 - Vitamin D activation
 - Degradation of hormones like insulin and aldosterone
- Metabolic function
 - Along with liver site for gluconeogenesis

Renal function tests; Why needed?

- To assess functional capacity of kidneys
- To diagnose renal impairment
- To assess the severity and progression of renal impairment
- To assess the effectiveness of treatment

Causes of renal disease

- Pre-renal
 - Any condition that results in reduced blood flow to kidneys
 - Severe blood loss
 - Hemolysis
- Renal
 - Damage to renal tissue, glomerular basement membrane or tubules
 - Glomerulonephritis
 - Diabetic or hypertensive nephropathy
 - Tubular damage due to toxic substances
- Post Renal
 - Obstruction to urine outflow
 - Ureteric or urethral stone
 - Prostatic cancer

This list not exhaustive, these are only few common causes of renal disease

Renal function test

- Can be divided into two categories
 - Test for glomerular function
 - Serum Urea
 - Serum Creatinine
 - Clearance tests
 - Tests for tubular function
 - Urine concentration test
 - Dilution test
 - Para amino hippuric acid clearance test
 - Acidification test
 - Urine examination
 - Important for assessing both glomerular and tubular function

Renal function test

- The following parameters are commonly included in assessing renal function (the normal values/reference range is mentioned)
 - Serum Urea (15-45 mg/dl)
 - Serum Creatinine (0.6 1.2 mg/dl)
 - Serum Uric acid (males 3.5-7.2 mg/dl, females 2.6-6 mg/dl)
 - Total protein (6.4-8.1 g/dl)
 - Serum albumin (3.2-4.6 g/dl)
 - Serum electrolytes
 - Na (136-146 mEq/L)
 - K (3.5-5.1 mEq/L)
 - Cl (101-109 mEq/L)
 - Phosphate (2.8-4 mg/dl)
 - Calcium (8.8-10.2 mg/dl)

Renal Function Tests

- Complete hemogram
 - Hemoglobin
 - total RBC
 - RBC indices
 - MCH (Mean corpuscular hemoglobin)
 - MCV (Mean corpuscular volume
 - PCV (Packed cell volume)
 - MCHC (Mean corpuscular Hemoglobin concentration)
 - RDW (Red cell distribution width)
 - ESR

Routine urine examination

- Physical appearance
 - Colour
 - pH
 - Specific gravity
- Analytes
 - Protein
 - Glucose
 - Ketones
 - Bilirubin
 - Urobilinogen
 - Leucocyte
 - Nitrite

- Microscopy
 - RBC
 - Pus Cells
 - Epithelial cells
 - Casts
 - Crystals
- 24 hour urine protein
- Albumin/creatinine ration (ACR)

Clearance test

- Clearance of substance is defined as the volume of plasma that is cleared of that substance in unit time
- Inulin clearance accurately measures GFR as it is neither secreted or absorbed by the renal tubules
- However it is not routinely done in patients.
- In clinical setting estimated GFR (eGFR) is more commonly used; it is calculated from serum creatinine value

Estimated GFR

- The Cockcroft-Gault formula for estimating creatinine clearance (CrCl) is routinely as a simple means to provide a reliable approximation of residual renal function in all patients with CKD. The formulas are as follows:
- CrCl (male) = ([140-age] × weight in kg)/(serum creatinine × 72)
- However this has been extensively modified and there are online calculators of eGFR from serum creatinine and body weight of patients
- The eGFR is used to determine the stage of chronic kidney disease

Changes in serum analytes in kidney disease

- Serum Urea and creatinine
 - They both are increased in renal disease
 - Urea increases more in glomerular disease as compared to creatinine
 - Urea is a less reliable indicator than creatinine as it is affected by many factors such as;
 - Protein intake
 - Dehydration
 - Muscle breakdown
- Serum Uric acid
 - It may increase in chronic kidney disease but not sufficient to cause gout
 - However raised uric acid is a bad prognostic indicator for chronic renal disease

Changes in serum analytes in kidney disease

- Total protein and albumin
 - Both serum total protein and albumin is decreased in chronic kidney disease (CKD) due to increased proteinuria
 - Even though proteinuria may also be seen in acute kidney disease but it usually does not alter the total protein and albumin
- Serum electrolytes
 - Sodium is decreased (hyponatremia) and potassium is increased (hyperkalemia) in chronic kidney disease (CKD) as kidney reabsorb sodium in exchange of potassium
 - Chloride and phosphate is increased in CKD
 - Calcium is decreased as vitamin D is deficient

Changes in hemogram and urine analysis in kidney disease

- RBC count and hemoglobin is decreased in advanced stages of kidney disease due to deficiency of erythropoietin
- Urine examination reveals
 - Proteinuria is seen in both acute and chronic kidney disease as well as kidney infection
 - Proteinuria can be of two types
 - In the initial stages very less amount of albumin escapes into urine; microalbuminuria (30 to 300 mg/day)
 - Frank proteinuria (when it is greater than 300 mg/day)
 - Best evaluated in 24 hour urine sample
 - In spot urine albumin/ creatinine ratio is used to evaluate proteinuria
 - Presence of RBC may indicate glomerulonephritis, acute nephritis, kidney infection
 - Presence of pus cells, esterase positivity, nitrites may indicate bacterial infection

Tests for tubular function

- Urine concentration test
 - In CKD kidneys loses the ability to concentrate urine
 - Specific gravity is measured in urine
 - Low fixed specific gravity is indicative of chronic kidney disease
- Dilution test
 - After overnight water deprivation patient is asked to take 1200ml of water in half hour, urine specific gravity is measured in samples collected over next 4 hours. At least one sample should show sp gr of 1.003 or below

Tests for tubular function

- Para amino hippuric acid clearance test
 - PAH is unique in that it is completely excreted in one passage through kidney as it is both filtered and secreted.
 - Therefore clearance of PAH is a measure of renal plasma flow
- Acidification test
 - In this the ability to acidify urine is tested after administering 0.1g/kg ammonium chloride gelatin coated samples

Thank you